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INTRODUCTION

The overall objective of this program is to develop and verify a series of
interdisciplinary modeling and analysis techniques that have been specialized to
address three specific hot section components. These techniques incorporate data
as well as theoretical methods from many diverse areas including cycle and
performance analysis, heat transfer analysis, linear and nonlinear stress analysis,
and mission analvsis. Building on the proven techniques already available in these
fields, the new methods developed through this contract are integrated to provide
an accurate, efficient, and unified approach to analyzing combustor burner liners,
hollow air-cooled turbine blades, and air-cooled turbine vanes. For these
components, the methods developed predict temperature, deformation, stress, and
strain histories throughout a complete flight mission.

The base program for the component specific modeling effort is illustrated in
Figure (1). Nine separate tasks were arranged into two paraliel activities. The
component specific structural modeling activity in Figure (2), was directed towards
the development of the analytical techniques and methodology required in the
analysis of complex hot section components. The component specific
thermomechanical 1oad mission modeling effort illustrated in Figure (3), provides
for the development of approximate numerical models for engine cycle, aerodynamic,
and heat transfer analyses of hot section components.

THERMODYNAMIC AND THERMOMECHANICAL MODELS

The Thermodynamic Engine Model (TDEM) and the Thermomechanical Load (TOLM)
Model have been reported on extensively at previous HOST conferences. They have
been installed on the NASA Lewis CRAY for over a year where they have been
exercised by both GE and NASA personnel. Figures 4, 5 and 6 show representative
pieces of input and output of these models. Figure 4 shows the input to the TDEM
definina a specific mission. Fiaqure 5 shows the output of the TDEM giving the
engine parameters for a mission. This is then the input to the TDLM. Figure 6
shows a snapshot of a portion of the output of the TDLM for a combustor nugget
showing the result of running the TDEM and TDLM to be local structural temperature
and pressure loading on a component.

COMBUSTOR STRUCTURAL ANALYSIS

The emphasis in Phase 1 of this program has been on automating the COSMO
procedure for the combustor liner. The COSMO procedure continues with the output

*Work done undef NASA Contract NAS3-23687.
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of the TDLM being structured as a data file for use in the combustor component
specific model. Fiqure 7 defines the recipe which generates the combustor
structural model. Fiqure 8 is a snapshot of a typical run of the combustor model
when it was in the checkout phase as a free-standing code. As indicated, the model
contains a default set of recipe parameters, only changes to this list need be
given. After the recipe parameters have been set, only 5 parameters need be
specified to generate a 3D sector model of a combustor to perform a hot streak
analysis. The first parameter (shown as the number of exhaust nozzles) is required
to divide the 360° combustor into the proper number of sectors. The next parameter
(shown as the no. of circumferential elements) is used by the analyst to split up
the circumferential sector into a number of slices, NS, for the 3D elements. Next,
depending on the number of slices selected, the analyst can bias these slices by
specifying NS-1 percents (program calculates final bias to total 100%). In this
case the biasing selected, starting at the hot streak, was 5%, 15%, and 30% with
the final slice being 50%. This is all the information that is required to
generate a 3D finite element model consisting of 20-noded isoparametric elements.
In this case the model consists of 648 elements, 3192 nodes and has 768 element
faces with pressure loading. Figures 9 and 10 are graphical depictions of this 3D
model. The combustor then maps the temperatures and pressures from the TDLM onto
this model and generates data files for the structural analysis.

COSMO SYSTEM

Fiqure 11 shows a flow chart of the overall COSMO system including the action
positions of the adaptive controls developed in this program. This system includes
a bandwidth optimizer which is necessary to make the automatic remeshing/mesh
refinement activity possible. For the combustor, the following adaptive controls
have been incorporated into the system (the numbers are consistent with
Figure 11).

1. time increment
2. load increment

3. plasticity tolerances

4, creep tolerances

5. number of master region elements
6. number of slices

7. position of slices

8. row refinement

9. element refinement
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The first four adaptive controls are a function of the structural code being
used. For this system the code and the controls are those developed under, "3D
Inelastic Analysis Methods for Hot Section Structures." The other adaptive
controls are keyed from a decision grid as indicated in Figure 12. The gradients
in normalized stress, total strain, plastic strain, and creep strain will be used
to rank requirements.
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Figure 12.

Combustor Nugget Decision Grid.



